ARTIFICIAL NERVOUS SYSTEMS The Genetic Programming of Production-Rule-GenNet Circuits
نویسنده
چکیده
A year ago, the author evolved a simulated artificial creature (biot, i.e. biological robot), called LIZZY, which consisted of fully connected neural network modules (called GenNets), whose weights were evolved such that each GenNet performed some desired behavior, such as making the biot walk straight ahead, turn clockwise or anticlockwise, peck, or mate [de Garis 1990, 1991, 1993]. Other such GenNets were evolved to detect sinusoidal frequencies, or signal strengths, or signal strength differences, etc. However, the middle layer, between the detector and the motion GenNets, was implemented with traditional symbolic production rules, for reasons of computer simulation speed. Every time a GenNet was added to the system, simulation speed dropped. This paper "completes" the above work, by proposing a model which shows how a circuit of production-rule-GenNets (i.e. GenNets which behave like production rules), can be evolved which implements the middle or "decisional" layer, which takes signals outputted from the detector GenNets, and then decides which motion GenNet should be switched on. This work takes a first step towards the evolution of whole nervous systems, where circuits of GenNet modules (of appropriate types) are evolved to give a biot a total behavioral performance repertoire.
منابع مشابه
A Fast and Self-Repairing Genetic Programming Designer for Logic Circuits
Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...
متن کاملBRAIN BUILDING The Genetic Programming of Artificial Nervous Systems and Artificial Embryos
This article introduces the concept of Genetic Programming (GP), which is the application of the Genetic Algorithm to the creation of functional systems which are too complex in their dynamics to be analyzed or pre-specified in detail. Such systems can be built, but (probably) not understood. Two main examples of the application of the GP philosophy are introduced one is the creation of an arti...
متن کاملA Comparison of Regression and Neural Network Based for Multiple Response Optimization in a Real Case Study of Gasoline Production Process
Most of existing researches for multi response optimization are based on regression analysis. However, the artificial neural network can be applied for the problem. In this paper, two approaches are proposed by consideration of both methods. In the first approach, regression model of the controllable factors and S/N ratio of each response has been achieved, then a fuzzy programming has been app...
متن کاملGenetic Programming: Artificial Nervous Systems, Artificial Embryos and Embryological Electronics
This paper shows that it is possible to build hyper-complex systems such as an artificial nervous system or an artificial embryo, despite the fact that their interactions or dynamics are (probably) too complicated to be analyzed. Genetic Programming (GP) is "applied evolution", i.e. using the Genetic Algorithm (GA) [GOLDBERG 1989] to evolve hyper-complex systems. Future work using the GP paradi...
متن کاملAdaptive Rule-Base Influence Function Mechanism for Cultural Algorithm
This study proposes a modified version of cultural algorithms (CAs) which benefits from rule-based system for influence function. This rule-based system selects and applies the suitable knowledge source according to the distribution of the solutions. This is important to use appropriate influence function to apply to a specific individual, regarding to its role in the search process. This rule ...
متن کامل